O Grupo de pesquisa do Centro de Estudos do Mar - Fenômenos das Descargas Atmosféricas, da UFPR irá promover no dia 14 de Janeiro de 2017, na praia de Matinhos, o II evento de extensão - Litoral em Alerta.
Este evento possui o objetivo de esclarecer dúvidas quanto aos perigos dos raios, principalmente durante o verão, e em particular na região litorânea do estado do Paraná. Também pretende apresentar a comunidade em geral um estudo realizado sobre a densidade de raios no litoral do Paraná, através de uma pesquisa feita por alunos e professores do CEM-UFPR.
Alunos e professores do CEM-UFPR estarão presentes no local, com folders, poster e alguns equipamentos usados no monitoramento deste fenômeno atmosférico. Haverá a participação de estudantes de outras instituições colaboradoras e do incentivo do SIMEPAR.
Prestigie, participe!
FÍSICA ATMOSFÉRICA
Blog do Professor* Doutor Armando Heilmann Dedique-se a Descobrir e Explorar a Física e seus Conceitos de uma Maneira Totalmente Diferente. * Professor: É alguém que professa, proclama, atesta e transmite o conhecimento adquirido por ele em uma arte ou ciência
18 dezembro, 2016
01 agosto, 2016
Antenas de celular medem chuva com precisão
Sensor de chuva
Uma das maiores dificuldades que os meteorologistas encontram para fazer melhores previsões é a falta de sensores que lhes deem dados estatísticos suficientes para uma amostragem significativa e com alta resolução espacial.
Hoje, eles dependem de pluviômetros, geralmente instalados em estações muito espaçadas, ou de radares, muito caros e dificilmente disponíveis para todas as áreas.
A boa notícia é que a rede de telefonia celular - mais especificamente, as ondas que trafegam entre as antenas e entre as antenas e os celulares - pode se transformar em um gigantesco sensor capaz de monitorar a chuva em grandes áreas e com alta resolução.
A qualidade dos dados de precipitação obtidos pelo programa é a mesma dos pluviômetros, mas com a grande vantagem da maior resolução espacial e da disponibilização dos dados em tempo real. [Imagem: Christian Chwala]
A descoberta de que as gotas de chuva atenuam a propagação das ondas eletromagnéticas de uma forma mensurável foi feita por Christian Chwala e seus colegas do Instituto de Tecnologia Karlsruhe, na Alemanha.
Chwal desenvolveu um programa de computador que consegue derivar a informação sobre as precipitações atmosféricas a partir de flutuações nos sinais recebidos pelas antenas das estações de telefonia celular. Segundo ele, a técnica poderá ser a solução para áreas com pequena cobertura de sensores, como os países mais pobres.
Pluviômetro eletromagnético
"Os pingos de chuva são quase tão grandes quanto o comprimento de onda da radiação de micro-ondas dos links de rádio operando em frequências de 15 a 40 gigahertz. Por esta razão, eles atenuam fortemente a radiação nesta faixa de frequência," explica o professor Harald Kunstmann, coordenador do trabalho.
Quanto mais forte for a chuva, maior é a diminuição da potência do sinal entre duas antenas. Os usuários de celulares dificilmente notam o efeito, a não ser em casos de tempestades, quando então o sinal é interrompido e a ligação cai.
A qualidade dos dados de precipitação obtidos pelo programa é a mesma dos pluviômetros, mas com a grande vantagem da maior resolução espacial e da disponibilização dos dados em tempo real. "O limite de detecção é uma chuva de um milímetro por hora, e os dados ficam disponíveis com um retardo de apenas um minuto," disse Chwala.
Bibliografia:
Real-time data acquisition of commercial microwave link networks for hydrometeorological applications
Christian Chwala, Felix Keis, Harald Kunstmann
Atmospheric Measurement Techniques
Vol.: 9, Issue 3, 991-999
DOI: 10.5194/amt-9-991-2016
Onde caem mais raios na Terra?
Censo de raios
Embora seja um questionamento comum aos estatísticos, as probabilidades de uma pessoa ser atingida por um raio são quase sempre retratadas como muito remotas. No entanto, no mês de maio, incidentes envolvendo raios bateram recordes ao atingirem dezenas de pessoas ao redor do mundo.
Em Bangladesh, durante violentas tempestades tropicais, foram 65 vítimas fatais em apenas quatro dias. Na França e na Alemanha, dezenas de pessoas ficaram feridas durante fortes chuvas, incluindo um grupo de crianças de 9 a 11 anos, atingidas por um raio durante uma partida de futebol. No Brasil houve ao menos uma vítima fatal no período.
Mas onde caem mais raios no planeta Terra? E por que caem tantos em alguns lugares?
Sensor de raios
Liderados pela professora Rachel Albrecht, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP, pesquisadores da NASA e de diversas universidades se reuniram para tentar responder a essas perguntas.
Usando um sensor de raios chamado LIS (Lightning Imaging Sensor), a bordo do satélite de observações TRMM (Tropical Rainfall Measuring Mission) da Nasa, a equipe compôs um mapa que mostra as principais zonas de incidência de raios ao redor do planeta.
"O sensor foi lançado no final de 1997 e descomissionado em 2015," conta Rachel. "Desde 2009, monitoramos os máximos de raios, fazendo a climatologia, e agora, como o satélite não está mais operando, encerramos com 16 anos de dados, incluindo de 1998 até 2013."
Video Raios Maracibo
Raios na região do Lago Maracaibo, na Venezuela, o local onde caem mais raios no mundo.
Os dados permitiram compor um ranking que lista os 500 locais com maior incidência de raios no mundo.
Individualmente, o Lago Maracaibo, na Venezuela, é a capital mundial dos raios. Até então, a maior densidade de raios tinha sido encontrada no Congo, na África.
De fato, 283 locais apontados no mapa estão na África, uma região que, de acordo com Rachel, tem desenvolvimento de sistemas convectivos de mesoescala durante o ano inteiro e numa área grande.
O Brasil começa a aparecer na posição 191, e o local com mais raios fica localizado ao noroeste de Manaus, próximo do Rio Negro. Contudo, quando se somam todos os raios sobre o território nacional, o Brasil é o país com mais raios no mundo, devido a sua dimensão continental e por estar nos trópicos. "Só no Brasil temos, em média, aproximadamente 110 milhões de raios totais por ano", disse Rachel.
[..."Hoje temos cerca de 120 mortes por ano e 500 pessoas feridas, ou seja, 620 pessoas são atingidas por ano no Brasil.
O Brasil é o país com maior incidência de raios no mundo.
"São entre 50 e 60 milhões de descargas por ano, com maior volume no verão", todas as regiões do país têm áreas com alta incidência de raios, como a parte oeste dos estados da Região Sul e a área da Grande São Paulo, no Sudeste, e o estado do Piauí, no Nordeste....]
Indicativos de mudanças climáticas
Uma das principais conclusões do estudo é que a incidência de raios está relacionada com as características dos respectivos locais, como a topografia ou vegetação.
Para o futuro, os pesquisadores pretendem analisar se, nesses 16 anos, houve um aumento ou uma diminuição na intensidade das tempestades, não apenas no número de raios, mas se estão mais intensas ou não. A ideia é "ter um indício do que está ocorrendo em termos de mudanças climáticas nessa última década e meia", finaliza Rachel.
Referência:
Where are the lightning hotspots on Earth?
Rachel I. Albrecht, Steven J. Goodman, Dennis E. Buechler, Richard J. Blakeslee, Hugh J. Christian
Bulletin of the American Meteorological Society
DOI: 10.1175/BAMS-D-14-00193.1
Sons da Aurora Boreal
Em 2012, um grupo liderado pelo professor Unto Laine, da Universidade Aalto, na Finlândia, demonstrou que um daqueles "mitos históricos" - os relatos de que a aurora boreal emitia sons - era um fato.
E, mais do que isso, a equipe demonstrou que, embora as Luzes do Norte ocorram a altitudes entre 80 e 150 km, a fonte dos sons associados a elas parecia estar localizada bem perto do chão, a uma altitude de aproximadamente 70 metros.
Agora a equipe encontrou uma explicação para o mecanismo que cria o som e confirmou sua origem de baixa altitude. Para isso, eles combinaram medições acústicas locais com os perfis de temperatura atmosférica medidos pelo Instituto Meteorológico da Finlândia.
Camada de inversão
Em um fenômeno que a equipe chamou de "hipótese da camada de inversão", os estalidos e crepitares associados com a Aurora Boreal surgem quando a tempestade geomagnética que produz as luzes na alta atmosfera ativa as cargas elétricas que se acumularam na camada de inversão da atmosfera, fazendo-as descarregar como se fossem minúsculos raios.
"As temperaturas geralmente caem quanto maior a altitude. No entanto, quando as temperaturas estão bem abaixo de zero e, em geral em condições climáticas claras e calmas durante a tarde e a noite, o frio fica perto da superfície e o ar mais quente fica em cima.
"Esse ar quente não se mistura, ele sobe em direção a uma camada mais fria levando cargas negativas do solo. A camada de inversão forma uma espécie de tampa, dificultando os movimentos verticais das cargas. O ar mais frio acima dela é positivamente carregado.
"Finalmente, uma tempestade geomagnética faz com que as cargas acumuladas descarreguem na forma de faíscas que criam pulsos magnéticos e sonoros mensuráveis," explica o professor Laine.
Mistérios das auroras boreais
De acordo com o pesquisador, a hipótese da camada de inversão também dá uma explicação crível de por quê os sons das auroras boreais só são ouvidos em condições meteorológicas calmas.
Ele enfatiza que a hipótese não exclui outros mecanismos, mas esta é a primeira explicação para todos os três mistérios relacionados aos sons das auroras polares.
"Além do mecanismo que gera o som, isso nos ajuda a entender como podemos ouvir o som quando a fonte de luz da aurora está a uma distância de 80 a 100 km. A hipótese da camada de inversão também oferece respostas para como é possível que os eventos sonoros ocorram quase simultaneamente com as observações visuais: partindo de uma altitude de 75 metros, o som atinge o ouvido humano em apenas 0,2 segundo," conclui ele.
Bibliografia:
Auroral Acoustics project - a progress report with a new hypothesis
Unto Kalervo Laine
Vol.: To be published
Auroral Acoustics project - a progress report with a new hypothesis
Unto Kalervo Laine
Vol.: To be published
Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=sons-da-aurora-boreal&id=010125160627
09 dezembro, 2015
Blitzdienst: Die Zähler des Zeus
Wo immer Zeus in Europa seinen Blitz schleudert, Stephan Thern
registriert es. Sein Blitzdienst meldet nur Sekunden später, wo es
eingeschlagen hat.
Stephan Thern vom Siemens Blitz-Informationsdienst (BLIDS) in Karlsruhe (Baden-Württemberg) stehtvor einer Bildmontage des Karlsruher Schlosses. Foto: dpa
Font: http://www.mittelbayerische.de/panorama-nachrichten/blitzdienst-die-zaehler-des-zeus-21934-art1088623.html
Stephan Thern vom Siemens Blitz-Informationsdienst (BLIDS) in Karlsruhe (Baden-Württemberg) stehtvor einer Bildmontage des Karlsruher Schlosses. Foto: dpa
Karlsruhe.Wenn sich
am Himmel Gewitterwolken zusammenballen, kann Stephan Thern gar nicht
anders, als seinen Computer anzuwerfen. „Ich will dann natürlich wissen,
ob wir das Unwetter auf dem Schirm haben“, erzählt der Elektrotechniker
und ein kleines Lächeln umspielt seinen Mund. Bislang hat ihn die
Technik nie enttäuscht.
150 Stationen in Europa
Der von Thern geführte Blitzdienst von Siemens in Karlsruhe
registriert im Schnitt rund eine Million Entladungen im Jahr über
Deutschland. Für die Aufzeichnung reichen 16 Messpunkte in Deutschland
aus sowie weitere rund 150 Stationen, die Siemens gemeinsam mit Partnern
in Europa betreibt. Für die Informationen interessieren sich vor allem
Energieversorger und Flughäfen, Versicherungen und Organisatoren von
Großveranstaltungen.
Die Blitze
lassen sich leicht messen. Bei ihrer Entladung setzen sie eine
elektromagnetische Welle frei, die sich mit hoher Geschwindigkeit in
alle Richtungen ausbreitet. Die Messstationen in einer Entfernung von
bis zu 600 Kilometern können dieses Feld garantiert aufzeichnen. „Die
Reichweite ist aber weit größer“, erklärt Thern. „Wir haben mit unserer
Karlsruher Station schon Blitze über Portugal gemessen.“
Wird
ein Blitz von mindestens zwei Stationen aufgezeichnet, kann anhand des
Abgleichs von Zeit und Entfernung der Punkt der Entladung errechnet
werden. Je mehr Stationen Daten liefern, desto exakter kann der
Blitzdienst den Ort eingrenzen. „Im Moment liegen wir bei einer
Genauigkeit von 200 bis 700 Metern.“
Wo Blitze
eingeschlagen haben, interessiert in erster Linie die Betreiber von
Freileitungen. „Wenn bei ihnen eine Leitung ausfällt, wollen sie wissen,
ob ein Blitz dafür verantwortlich ist oder doch ein umgefallener Baum“,
erklärt Thern. „Falls wir den Blitz bestätigen, kann die Leitung
schnell wieder ans Netz genommen werden, bei einem Baum dauern die
Aufräumarbeiten etwas länger.“
Versicherungen greifen auf Daten zurück
Versicherungen
benötigen die Daten, um zu prüfen, ob sie Schadenersatz leisten müssen.
„Die meisten Schäden entstehen ja nicht durch den Blitzschlag selbst,
sondern durch die Überspannung. Das kann zu Kurzschlüssen in Geräten
führen, die in einem Radius von 2,5 Kilometern vom Blitzschlag entfernt
stehen“, erläutert Thern.
Nach Angaben des
Gesamtverbandes der Deutschen Versicherungswirtschaft werden pro Jahr
zwischen 300 000 und 550 000 durch Blitz verursachte Schadensfälle
gemeldet. Die Gesamtschadenssumme liegt bei rund 300 Millionen Euro. Mit
Hilfe des Blitzdienstes können die Versicherungen schnell sehen, ob die
Angaben ihrer Kunden stimmig sind oder nicht.
Doch
das Blitz-Team belässt es nicht bei der bloßen Zählung. Seine Daten
dienen auch der Warnung. „Wir haben sogar einige Kunden, für die wir
sensible Anlagen abschalten können, wenn sich ein Gewitter nähert.“
Darunter fallen Rechenzentren und Windräder älterer Bauart, deren
Rotorblätter sich bei Blitzeinschlägen lösen können.
Seit
einigen Jahren arbeitet der Dienst auch an einer Kombination der
Blitzeinschläge mit anderen Wetterdaten, um Gewitterverläufe besser
vorhersagen zu können. „Das ist dann vor allem für Großveranstaltungen
interessant, die wissen wollen, was da auf sie zukommt – ob sie
evakuieren müssen oder nicht.“ Erste Interessenten gebe es bereits.
Hinweise
auf den Klimawandel, bei dem heftigere Stürme vorausgesagt werden, kann
Thern in seinen Daten nicht finden. „Dafür sind die Schwankungen
zwischen den einzelnen Jahren zu hoch.“ Im Schnitt wird eine deutsche
Region an 16 bis 36 Tagen im Jahr von Gewittern heimgesucht, 95 Prozent
aller Blitze schlagen zwischen Mai und September zu.
Die
Höhenlagen im Süden sind dabei stärker betroffen als die flachen Lagen
im Norden. Dort ziehen allerdings Windräder Blitze magisch an. „Das sind
die reinsten Blitzfänger“, sagt Thern und zeigt auf die Auswertung von
30 Einschlägen in Norddeutschland an einem Tag im Mai. In fast allen
Fällen stand eine Windkraftanlage im Mittelpunkt.
In
den vergangenen Wochen wurde Thern nur selten von Gewitterwolken an
seinen Computer gelockt. „Bislang hatten wir ein sehr ruhiges Jahr“,
sagt er, obwohl es in einigen Regionen heftige Pfingstunwetter gab. Aber
der richtige Sommer kommt ja vielleicht noch, und dann gibt es wieder
Feuerwerk auf den Rechnern: wenn mit einer Gewitterfront bis zu 200 000
Blitze über Deutschland niedergehen. (dpa)
Font: http://www.mittelbayerische.de/panorama-nachrichten/blitzdienst-die-zaehler-des-zeus-21934-art1088623.html
Laser é capaz de guiar os Raios
O laser faz com que a descarga elétrica execute caminhos complexos e desvie de obstáculos. [Imagem: Matteo Clerici - 10.1126/sciadv.1400111]
Raios guiados por laser
Pára-raios são bons, mas muito longe do ideal, sobretudo porque eles não estabelecem o caminho do raio, que geralmente espalha-se pelas cercanias.
A ideia de Matteo Clerici, do Instituto Nacional de Pesquisas Científicas do Canadá, é usar raios laser para guiar cuidadosamente o raio, até o seu destino final no solo.
O conceito funcionou bem, ao menos em pequena escala, em raios criados em laboratório, simulados por descargas elétricas entre dois eletrodos.
Clerici conseguiu dirigir com precisão os raios simulados, fazendo-os não apenas cair no lugar certo, mas até mesmo desviar-se de obstáculos no meio do caminho.
As descargas elétricas também foram dirigidas para seguir linhas retas ou trajetórias parabólicas entre a origem e o destino.
Raio desvia de obstáculo
Os experimentos mostraram que o trajeto do raio pode ser controlado ajustando o "formato" dos feixes de laser. Combinando diversos feixes, foi possível até mesmo fazer o raio atingir o receptor seguindo uma trajetória em "S".
Quando controlada para desviar de obstáculos, a descarga mudou o trajeto com precisão, passando sem danificar o objeto que servia de obstáculo.
É o formato do feixe de laser que estabelece a trajetória do raio. [Imagem: Matteo Clerici - 10.1126/sciadv.1400111]
O experimento é mais simples e possibilita um controle muito maior do que experimento similar realizado em 2012 por pesquisadores franceses, que fizeram os raios seguirem a trajetória retilínea de um laser pulsado.
As aplicações práticas, porém, ao menos em raios de verdade, deverão demorar, uma vez que também estes novos experimentos exigiram lasers de alta potência e manipularam descargas de poucos centímetros.
Mas descargas elétricas não acontecem apenas durante tempestades, sendo usadas diariamente em todos os motores a combustão e em equipamentos de solda, por exemplo, o que pode indicar aplicações promissoras em outras áreas.
Bibliografia:
Laser-assisted guiding of electric discharges around objects
Matteo Clerici, Yi Hu, Philippe Lassonde, Carles Milián, Arnaud Couairon, Demetrios N. Chrisodoulides, Zhigang Chen, Luca Razzari, François Vidal, François Légaré, Daniele Faccio, Roberto Morandotti
Science Advances
Vol.: 1, No. 5
DOI: 10.1126/sciadv.1400111
14 maio, 2015
O mapa de um trovão
Pela primeira vez os cientistas conseguiram capturar um mapa da explosão de radiação a partir de um relâmpago. O Héliofísico Maher Dayeh conseguiu registrar um mapa sonoro do trovão.
Uma corrente elétrica rapidamente flui do centro de cargas negativo da nuvem e segue para o solo, o relâmpago rapidamente aquece e expande o ar a sua volta, gerando ondas de choque.
Fonte: https://www.sciencenews.org/article/scientists-take-first-picture-thunder
15 agosto, 2014
Qual área de pesquisa seguir?
Esta é uma lista de algumas áreas de pesquisa. Foi retirada das opções de área do Journal of Geophysical Research Atmospheres, a serem escolhidas no momento de submissão de "qualquer" artigo, para aquele Journal.
ATMOSPHERIC
COMPOSITION AND STRUCTURE
|
Aerosols
and particles (0345, 4801, 4906)
|
Airglow
and aurora
|
Air/sea
constituent fluxes (3339, 4504)
|
Biosphere/atmosphere
interactions (0426, 1610)
|
Chemical
kinetic and photochemical properties
|
Cloud
optics
|
Cloud
physics and chemistry
|
Cloud/radiation
interaction
|
Constituent
sources and sinks
|
Evolution
of the atmosphere (1610, 8125)
|
Exosphere
|
Geochemical
cycles (1030)
|
Ion
chemistry of the atmosphere (2419, 2427)
|
Middle
atmosphere: composition and chemistry
|
Middle
atmosphere: constituent transport and chemistry (3334)
|
Middle
atmosphere: energy deposition (3334)
|
Planetary
atmospheres (5210, 5405, 5704)
|
Pollution:
urban and regional (0305, 0478, 4251, 4325)
|
Pressure,
density, and temperature
|
Thermosphere:
composition and chemistry
|
Thermosphere:
energy deposition (3369)
|
Radiation:
transmission and scattering
|
Troposphere:
composition and chemistry
|
Troposphere:
constituent transport and chemistry
|
Volcanic
effects (4301, 8409)
|
Instruments
and techniques
|
General
or miscellaneous
|
BIOGEOSCIENCES
|
Agricultural
systems
|
Anoxic
and hypoxic environments (4802, 4834)
|
Astrobiology
and extraterrestrial materials
|
Benthic
processes (4804)
|
Bioavailability:
chemical speciation and complexation
|
Biodiversity
|
Biogeochemical
kinetics and reaction modeling (0414, 0793, 1615, 4805, 4912)
|
Biogeochemical
cycles, processes, and modeling (0412, 0793, 1615, 4805, 4912)
|
Biogeophysics
|
Bioremediation
|
Biomineralization
|
Biomolecular
and chemical tracers
|
Bio-optics
|
Biosignatures
and proxies
|
Biosphere/atmosphere
interactions (0315)
|
Carbon
cycling (4806)
|
Climate
dynamics (1620)
|
Computational
methods and data processing
|
Contaminant
and organic biogeochemistry (0792)
|
Data
sets
|
Diel,
seasonal, and annual cycles (4227)
|
Ecosystems,
structure and dynamics (4815)
|
Estuarine
and nearshore processes (4235)
|
Evolutionary
geobiology
|
Geomicrobiology
|
Hydrothermal
systems (1034, 3017, 3616, 4832, 8135, 8424)
|
Instruments
and techniques
|
Isotopic
composition and chemistry (1041, 4870)
|
Life in
extreme environments
|
Limnology
(1845, 4239, 4942)
|
Macro-
and micropaleontology (3030, 4944)
|
Marine
systems (4800)
|
Metals
|
Microbe/mineral
interactions
|
Microbiology:
ecology, physiology and genomics (4840)
|
Modeling
(1952, 4316)
|
Natural
hazards (4308)
|
Nitrogen
cycling
|
Nutrients
and nutrient cycling (4845, 4850)
|
Oxidation/reduction
reactions (4851)
|
Paleoclimatology
and paleoceanography (3344, 4900)
|
Permafrost,
cryosphere, and high-latitude processes (0702, 0716)
|
Plant
ecology (1851)
|
Pollution:
urban, regional and global (0345, 4251, 4325)
|
Remote
sensing
|
Restoration
|
Riparian
systems (0744, 1856)
|
Science
policy (6620)
|
Soils/pedology
(1865)
|
Sulfur
cycling
|
Trace
element cycling (4875)
|
Trace
gases
|
Food
webs and trophodynamics (4817)
|
Urban
systems (4325)
|
Water/energy
interactions (1878)
|
Water
quality
|
Wetlands
(1890)
|
General
or miscellaneous
|
New
fields (not classifiable under other headings)
|
COMPUTATIONAL
GEOPHYSICS (1980, 3200, 3252, 4307, 4314, 7833)
|
Agent-based
models
|
Cellular
automata
|
Data
analysis: algorithms and implementation
|
Data
management
|
Data
presentation and visualization (1994)
|
Hardware
solutions
|
Image
processing
|
Modeling
(1952, 4255, 4316)
|
Model
verification and validation
|
Neural
networks, fuzzy logic, machine learning (1942)
|
Numerical
solutions (4255)
|
Instruments
and techniques
|
General
or miscellaneous
|
CRYOSPHERE
(4540)
|
Permafrost
(0475, 4308)
|
Seasonally
frozen ground
|
Active
layer
|
Thermokarst
|
Periglacial
processes
|
Cryosol
|
Clathrate
|
Cryobiology
(0475)
|
Tundra
(9315)
|
Glaciers
|
Rock
glaciers
|
Ice
cores (4932)
|
Ice
sheets
|
Ice
shelves
|
Ice
streams
|
Icebergs
|
Icing
(aufeis, naled)
|
Snow
(1827, 1863)
|
Ice
(1863)
|
Snowmelt
|
Avalanches
(4302)
|
Rivers
(0483, 1856)
|
Lakes
(9345)
|
Ponds
|
Sea ice
(4540)
|
Polynas
(4540)
|
Leads
(4540)
|
Remote
sensing
|
Engineering
|
Mass
balance (1218, 1223)
|
Energy
balance
|
Thermodynamics
(1011, 3611, 8411)
|
Thermal
regime
|
Properties
|
Distribution
|
Dynamics
|
Glaciology
(1621, 1827, 1863)
|
Weathering
(1625, 1886)
|
Contaminants
(0432)
|
Biogeochemistry
(0412, 0414, 1615, 4805, 4912)
|
Instruments
and techniques
|
Modeling
(1952, 4316)
|
General
or miscellaneous
|
EDUCATION
|
Elementary
and secondary education
|
Post-secondary
education
|
Informal
education
|
Curriculum
and laboratory design
|
Teaching
methods
|
Teacher
training
|
Evaluation
and assessment
|
Instructional
tools
|
Geoscience
education research
|
Diversity
|
ELECTROMAGNETICS
|
Antenna
arrays
|
Antennas
|
Biological
effects
|
Electromagnetic
theory
|
Guided
waves
|
Inverse
scattering
|
Measurement
and standards
|
Nonlinear
electromagnetics
|
Numerical
methods
|
Optics
(4264)
|
Plasmas
|
Random
media and rough surfaces
|
Reflectors
and feeds
|
Scattering
and diffraction
|
Signal
processing and adaptive antennas (6974)
|
Singularity
expansion method
|
Transient
and time domain
|
Wave
propagation (2487, 3285, 4275, 4455, 6934)
|
Instruments
and techniques
|
General
or miscellaneous
|
EXPLORATION
GEOPHYSICS
|
Computational
methods: seismic
|
Computational
methods: potential fields (1214)
|
Continental
structures (8109, 8110)
|
Data
processing
|
Downhole
methods
|
Gravity
methods (1219)
|
Magnetic
and electrical methods (5109)
|
Oceanic
structures
|
Radioactivity
methods
|
Remote
sensing
|
Seismic
methods (3025, 7294)
|
Instruments
and techniques
|
General
or miscellaneous
|
GEOCHEMISTRY
|
Geochemical
modeling (3610, 8410)
|
Thermodynamics
(0766, 3611, 8411)
|
Reactions
and phase equilibria (3612, 8412)
|
Subduction
zone processes (3060, 3613, 8170, 8413)
|
Mid-oceanic
ridge processes (3614, 8416)
|
Intra-plate
processes (3615, 8415)
|
Hydrothermal
systems (0450, 3017, 3616, 4832, 8135, 8424)
|
Alteration
and weathering processes (3617)
|
Magma
chamber processes (3618)
|
Magma
genesis and partial melting (3619)
|
Mantle
processes (3621)
|
Composition
of the core
|
Composition
of the continental crust
|
Composition
of the oceanic crust
|
Composition
of the hydrosphere
|
Composition
of the biosphere
|
Composition
of the mantle
|
Composition
of the moon
|
Composition
of the planets
|
Composition
of meteorites (3662, 6240)
|
Composition
of aerosols and dust particles
|
Geochemical
cycles (0330)
|
Major
and trace element geochemistry
|
Radiogenic
isotope geochemistry
|
Stable
isotope geochemistry (0454, 4870)
|
Mineral
and crystal chemistry (3620)
|
Fluid
and melt inclusion geochemistry
|
Marine
geochemistry (4835, 4845, 4850)
|
Sedimentary
geochemistry
|
Organic
and biogenic geochemistry
|
Planetary
geochemistry (5405, 5410, 5704, 5709, 6005, 6008)
|
Field
relationships (3690, 8486)
|
Instruments
and techniques
|
General
or miscellaneous
|
GEOCHRONOLOGY
|
Quaternary
geochronology
|
Sidereal
geochronology
|
Radioisotope
geochronology
|
Isotopic
disequilibrium dating
|
Chemical
and biological geochronology
|
Geomorphological
geochronology
|
Correlative
geochronology
|
Thermochronology
|
Tephrochronology
(8455)
|
Cosmogenic-nuclide
exposure dating (4918)
|
Extinct
radionuclide geochronology
|
Planetary
and lunar geochronology
|
Sedimentary
geochronology
|
Instruments
and techniques
|
General
or miscellaneous
|
GEODESY
AND GRAVITY
|
Standards
and absolute measurements
|
Instruments
and techniques
|
Integrations
of techniques
|
Satellite
geodesy: results (6929, 7215, 7230, 7240)
|
Satellite
geodesy: technical issues (6994, 7969)
|
Space
geodetic surveys(4337)
|
Control
surveys
|
Seismic
cycle related deformations (6924, 7209, 7223, 7230)
|
Transient
deformation (6924, 7230, 7240)
|
Tectonic
deformation (6924)
|
Non-tectonic
deformation
|
Earth's
interior: composition and state (7207, 7208, 8105, 8124)
|
Earth's
interior: dynamics (1507, 7207, 7208, 8115, 8120)
|
Rheology
of the lithosphere and mantle (7218, 8160)
|
Gravity
anomalies and Earth structure (0920, 7205, 7240)
|
Geopotential
theory and determination (0903)
|
Time
variable gravity (7223, 7230)
|
Reference
systems
|
Earth
rotation variations
|
Ocean/Earth/atmosphere/hydrosphere/cryosphere
interactions (0762, 1218, 3319, 4550)
|
Mass
balance (0762, 1223, 1631, 1836, 1843, 3010, 3322, 4532)
|
Atmosphere
monitoring with geodetic techniques (6952)
|
Ocean
monitoring with geodetic techniques (1225, 1641, 3010, 4532, 4556, 4560,
6959)
|
Global
change from geodesy (1222, 1622, 1630, 1641, 1645, 4556)
|
Lunar
and planetary geodesy and gravity (5417, 5450, 5714, 5744, 6019, 6250)
|
General
or miscellaneous (1709)
|
GEOMAGNETISM
AND PALEOMAGNETISM
|
Archeomagnetism
|
Biogenic
magnetic minerals
|
Core
processes (1213, 8115)
|
Dynamo:
theories and simulations
|
Environmental
magnetism
|
Geomagnetic
excursions
|
Geomagnetic
induction
|
Magnetic
anomalies: modeling and interpretation
|
Magnetic
fabrics and anisotropy
|
Magnetic
mineralogy and petrology
|
Magnetostratigraphy
|
Paleointensity
|
Paleomagnetic
secular variation
|
Paleomagnetism
applied to tectonics: regional, global
|
Paleomagnetism
applied to geologic processes
|
Rapid
time variations
|
Reference
fields: regional, global
|
Remagnetization
|
Reversals:
process, timescale, magnetostratigraphy
|
Rock
and mineral magnetism
|
Satellite
magnetics: main field, crustal field, external field
|
Spatial
variations: all harmonics and anomalies
|
Spatial
variations attributed to seafloor spreading (3005)
|
Time
variations: diurnal to decadal
|
Time
variations: secular and longer
|
Instruments
and techniques
|
Planetary
magnetism: all frequencies and wavelengths
|
General
or miscellaneous
|
GLOBAL
CHANGE
|
Abrupt/rapid
climate change (4901, 8408)
|
Atmosphere
(0315, 0325)
|
Biogeochemical
cycles, processes, and modeling (0412, 0414, 0793, 4805, 4912)
|
Climate
variability (1635, 3305, 3309, 4215, 4513)
|
Climate
dynamics (0429, 3309)
|
Cryospheric
change (0776)
|
Earth
system modeling (1225, 4316)
|
Geomorphology
and weathering (0790, 1824, 1825, 1826, 1886)
|
Global
climate models (3337, 4928)
|
Coupled
models of the climate system
|
Impacts
of global change (1225, 4321)
|
Land/atmosphere
interactions (1218, 1843, 3322)
|
Land
cover change
|
Oceans
(1616, 3305, 4215, 4513)
|
Regional
climate change (4321)
|
Remote
sensing (1855, 4337)
|
Sea
level change (1222, 1225, 4304, 4556)
|
Solid
Earth (1225)
|
Solar
variability (7537)
|
Water
cycles (1836)
|
Instruments
and techniques
|
General
or miscellaneous
|
HISTORY
OF GEOPHYSICS
|
Atmospheric
sciences
|
Biogeosciences
|
Computational
geophysics
|
Cryosphere
|
Geochronology
|
Geodesy
(1299)
|
Geomagnetism
and paleomagnetism
|
Hydrology
|
Nonlinear
geophysics
|
Ocean
sciences
|
Planetology
|
Seismology
|
Solar/planetary
relationships
|
Tectonophysics
|
Volcanology,
geochemistry, and petrology
|
Instruments
and techniques
|
General
or miscellaneous
|
HYDROLOGY
|
Anthropogenic
effects (4802, 4902)
|
Catchment
|
Chemistry
of fresh water
|
Climate
impacts (4321)
|
Computational
hydrology
|
Dams
|
Debris
flow and landslides (4303)
|
Desertification
|
Drought
(4303)
|
Eco-hydrology
|
Energy
budgets
|
Erosion
|
Estimation
and forecasting (4315)
|
Evapotranspiration
|
Extreme
events (4313)
|
Floods
(4303)
|
Floodplain
dynamics
|
Frozen
ground
|
Geographic
Information Systems (GIS)
|
Geomechanics
|
Geomorphology:
general (1625)
|
Geomorphology:
fluvial (1625)
|
Geomorphology:
hillslope (1625)
|
Glaciology
(0736, 0776, 1863)
|
Groundwater
hydraulics
|
Groundwater
hydrology
|
Groundwater
quality
|
Groundwater/surface
water interaction
|
Groundwater
transport
|
Human
impacts (4323)
|
Hydroclimatology
|
Hydrogeophysics
|
Hydrological
cycles and budgets (1218, 1655)
|
Hydrometeorology
|
Hydrologic
scaling
|
Infiltration
|
Irrigation
|
Land/atmosphere
interactions (1218, 1631, 3322)
|
Limnology
(0458, 4239, 4942)
|
Model
calibration (3333)
|
Modeling
(1952, 4316)
|
Monitoring
networks
|
Numerical
approximations and analysis (3336)
|
Overland
flow
|
Plant
ecology (0476)
|
Plant
uptake
|
Precipitation
(3354)
|
Precipitation-radar
|
Remote
sensing (1640, 4337)
|
Reservoirs
(surface)
|
River
channels (0483, 0744)
|
Rocks:
chemical properties
|
Rocks:
physical properties
|
Streamflow
|
Sedimentation
(4863)
|
Sediment
transport (4558)
|
Snow
and ice (0736, 0738, 0776, 1827)
|
Soils
(0486)
|
Soil
moisture
|
Stochastic
hydrology
|
Surface
water quality
|
Time
series analysis (1988, 3270, 4277, 4475)
|
Uncertainty
assessment (1990, 3275)
|
Ungaged
basins
|
Vadose
zone
|
Water
budgets
|
Water/energy
interactions (0495)
|
Watershed
|
Water
management (6334)
|
Water
supply
|
Weathering
(0790, 1625)
|
Wetlands
(0497)
|
Instruments
and techniques: modeling
|
Instruments
and techniques: monitoring
|
General
or miscellaneous
|
INFORMATICS
|
Community
modeling frameworks
|
Community
standards
|
Computational
models, algorithms
|
Cyberinfrastructure
|
Data
assimilation, integration and fusion
|
Data
management, preservation, rescue
|
Data
mining
|
Data
and information discovery
|
Decision
analysis (4324, 6309)
|
Emerging
informatics technologies
|
Forecasting
(2722, 4315, 7924)
|
Formal
logics and grammars
|
Geospatial
|
GIS
science
|
Data
and information governance
|
High-performance
computing
|
International
collaboration
|
Interoperability
|
Knowledge
representation and knowledge bases
|
Machine-to-machine
communication
|
Machine
learning (0555)
|
Markup
languages
|
Metadata
|
Metadata:
Provenance
|
Metadata:
Quality
|
Modeling
(0466, 0545, 0798, 1847, 4255, 4316)
|
Natural
language processing
|
Numerical
algorithms
|
Ontologies
|
Portals
and user interfaces
|
Query
languages for science, markup languages, ontologies
|
Real-time
and responsive information delivery (4346)
|
Rules
and logic
|
Scientific
reasoning/inference
|
Semantic
web and semantic integration
|
Sensor
web
|
Social
networks
|
Software
tools and services
|
Software
re-use
|
Spatial
analysis and representation (0500, 3252)
|
Standards
|
Statistical
methods: Descriptive (4318)
|
Statistical
methods: Inferential (4318)
|
Temporal
analysis and representation (1872, 3270, 4277, 4475)
|
Uncertainty
(1873, 3275)
|
Virtual
globes
|
Visualization
and portrayal (0530)
|
Web
Services
|
Workflow
|
General
or miscellaneous
|
INTERPLANETARY
PHYSICS
|
Coronal
mass ejections (4305, 7513)
|
Corotating
streams
|
Cosmic
rays
|
Discontinuities
(7811)
|
Ejecta,
driver gases, and magnetic clouds
|
Energetic
particles (7514)
|
Heliopause
and solar wind termination
|
Heliosphere/interstellar
medium interactions
|
Interplanetary
dust
|
Interplanetary
magnetic fields
|
Interplanetary
shocks
|
Interstellar
gas
|
MHD
waves and turbulence (2752, 6050, 7836)
|
Neutral
particles (7837)
|
Pickup
ions
|
Planetary
bow shocks
|
Plasma
waves and turbulence
|
Solar
cycle variations (7536)
|
Solar
wind plasma
|
Solar
wind sources
|
Instruments
and techniques
|
General
or miscellaneous
|
IONOSPHERE
(6929)
|
Active
experiments
|
Auroral
ionosphere (2704)
|
Current
systems (2721)
|
Electric
fields (2712)
|
Equatorial
ionosphere
|
Ion
chemistry and composition (0335)
|
Ionization
processes (7823)
|
Ionosphere/atmosphere
interactions (0335)
|
Ionosphere/magnetosphere
interactions (2736)
|
Ionospheric
disturbances
|
Ionospheric
dynamics
|
Ionospheric
irregularities
|
Ionospheric
storms (7949)
|
Meteor-trail
physics
|
Midlatitude
ionosphere
|
Modeling
and forecasting
|
Particle
acceleration
|
Particle
precipitation
|
Planetary
ionospheres (5435, 5729, 6026)
|
Plasma
interactions with dust and aerosols (7849)
|
Plasma
convection (2760)
|
Plasma
temperature and density
|
Plasma
waves and instabilities (2772)
|
Polar
cap ionosphere
|
Solar
radiation and cosmic ray effects
|
Topside
ionosphere
|
Wave/particle
interactions (7867)
|
Wave
propagation (0689, 3285, 4275, 4455, 6934)
|
Instruments
and techniques
|
General
or miscellaneous
|
MAGNETOSPHERIC
PHYSICS (6939)
|
Auroral
phenomena (2407)
|
Cusp
|
Electric
fields (2411)
|
Energetic
particles: precipitating
|
Energetic
particles: trapped
|
Field-aligned
currents and current systems (2409)
|
Forecasting
(1922, 4315, 7924, 7964)
|
Magnetic
reconnection (7526, 7835)
|
Magnetopause
and boundary layers
|
Magnetosheath
|
Magnetosphere:
inner
|
Magnetosphere:
outer
|
Magnetosphere
interactions with satellites and rings
|
Magnetosphere/ionosphere
interactions (2431)
|
Magnetospheric
configuration and dynamics
|
Magnetotail
|
Magnetotail
boundary layers
|
MHD
waves and instabilities (2149, 6050, 7836)
|
Numerical
modeling
|
Planetary
magnetospheres (5443, 5737, 6033)
|
Plasma
convection (2463)
|
Plasma
sheet
|
Plasmasphere
|
Plasma
waves and instabilities (2471)
|
Polar
cap phenomena
|
Radiation
belts
|
Ring
current
|
Solar
wind interactions with unmagnetized bodies
|
Solar
wind/magnetosphere interactions
|
Magnetic
storms and substorms (4305, 7954)
|
Substorms
|
Instruments
and techniques
|
General
or miscellaneous
|
MARINE
GEOLOGY AND GEOPHYSICS
|
Back-arc
basin processes
|
Continental
shelf and slope processes (4219)
|
Gas and
hydrate systems
|
Marine
magnetics and paleomagnetics (1550)
|
Marine
electromagnetics
|
Gravity
and isostasy (1218, 1222)
|
Heat
flow (benthic)
|
Hydrothermal
systems (0450, 1034, 3616, 4832, 8135, 8424)
|
Littoral
processes
|
Marine
hydrogeology
|
Marine
sediments: processes and transport
|
Marine
seismics (0935, 7294)
|
Micropaleontology
(0459, 4944)
|
Midocean
ridge processes
|
Ocean
drilling
|
Oceanic
hotspots and intraplate volcanism
|
Oceanic
plateaus and microcontinents
|
Oceanic
transform and fracture zone processes
|
Plate
tectonics (8150, 8155, 8157, 8158)
|
Ophiolites
(8140)
|
Seafloor
morphology, geology, and geophysics
|
Ocean
observatories and experiments
|
Subduction
zone processes (1031, 3613, 8170, 8413)
|
Submarine
landslides
|
Submarine
tectonics and volcanism
|
Submergence
instruments: ROV, AUV, submersibles
|
Instruments
and techniques
|
General
or miscellaneous
|
MATHEMATICAL
GEOPHYSICS (0500, 4307, 4314, 4400, 7833)
|
Fourier
analysis (3255)
|
Instability
analysis (4312)
|
Inverse
theory
|
Numerical
approximations and analysis (4260)
|
Persistence,
memory, correlations, clustering (3265, 4313, 7857)
|
Prediction
(3245, 4263, 4315)
|
Probabilistic
forecasting (3238, 4315)
|
Spatial
analysis (0500, 1980, 4319)
|
Spectral
analysis (3205, 3280, 4319)
|
Stochastic
processes (3235, 4468, 4475, 7857)
|
Time
series analysis (1872, 1988, 4277, 4475)
|
Uncertainty
quantification (1873, 1990)
|
Wavelet
transform (3255, 4455)
|
Wave
propagation (0689, 2487, 4275, 4455, 6934)
|
Instruments
and techniques
|
General
or miscellaneous
|
ATMOSPHERIC
PROCESSES
|
Atmospheric
electricity
|
Balanced
dynamical models
|
Climate
change and variability (1616, 1635, 3309, 4215, 4513)
|
Boundary
layer processes
|
Climatology
(1616, 1620, 3305, 4215, 8408)
|
Clouds
and aerosols
|
Clouds
and cloud feedbacks
|
Convective
processes
|
Data
assimilation
|
General
circulation (1223)
|
Idealized
model
|
Land/atmosphere
interactions (1218, 1631, 1843, 4301)
|
Large
eddy simulation
|
Lightning
|
Monte
Carlo technique
|
Mesoscale
meteorology
|
Mesospheric
dynamics
|
Model
calibration (1846)
|
Middle
atmosphere dynamics (0341, 0342)
|
North
American Monsoon
|
Numerical
approximations and analyses (1849)
|
Global
climate models (1626, 4928)
|
Ocean/atmosphere
interactions (0312, 4301, 4504)
|
Paleoclimatology
(0473, 4900)
|
Planetary
meteorology (5445, 5739)
|
Polar
meteorology
|
Precipitation
(1854)
|
Radiative
processes
|
Regional
modeling (4316)
|
Remote
sensing (4337)
|
Stratosphere/troposphere
interactions
|
Stratospheric
dynamics
|
Synoptic-scale
meteorology
|
Subgrid-scale
(SGS) parameterization
|
Theoretical
modeling (4316)
|
Thermospheric
dynamics (0358)
|
Tropical
convection
|
Tropical
cyclones
|
Tropical
dynamics
|
Tropical
meteorology
|
Tropopause
dynamics
|
Turbulence
(4490)
|
Acoustic-gravity
waves
|
Tides
and planetary waves
|
Wildland
fire model
|
Instruments
and techniques
|
General
or miscellaneous
|
MINERALOGY
AND PETROLOGY
|
Geochemical
modeling (1009, 8410)
|
Thermodynamics
(0766, 1011, 8411)
|
Reactions
and phase equilibria (1012, 8412)
|
Subduction
zone processes (1031, 3060, 8170, 8413)
|
Mid-oceanic
ridge processes (1032, 8416)
|
Intra-plate
processes (1033, 8415)
|
Hydrothermal
systems (0450, 1034, 3017, 4832, 8135, 8424)
|
Alteration
and weathering processes (1039)
|
Magma
chamber processes (1036)
|
Magma
genesis and partial melting (1037)
|
Mantle
processes (1038)
|
Mineral
and crystal chemistry (1042)
|
Petrography,
microstructures, and textures
|
Experimental
mineralogy and petrology
|
Igneous
petrology
|
Extrusive
structures and rocks
|
Intrusive
structures and rocks
|
Layered
magma chambers
|
Metamorphic
petrology
|
Thermobarometry
|
Pressure-temperature-time
paths
|
Fluid
flow
|
Ultra-high
pressure metamorphism
|
Ultra-high
temperature metamorphism
|
Meteorite
mineralogy and petrology (1028, 6240)
|
Mineral
occurrences and deposits
|
Planetary
mineralogy and petrology (5410)
|
Sedimentary
petrology
|
Field
relationships (1090, 8486)
|
Instruments
and techniques
|
General
or miscellaneous
|
MINERAL
PHYSICS
|
Creep
and deformation
|
Defects
|
Elasticity
and anelasticity
|
Electrical
properties
|
Equations
of state
|
High-pressure
behavior
|
NMR,
Mossbauer spectroscopy, and other magnetic techniques
|
Optical,
infrared, and Raman spectroscopy
|
Physical
thermodynamics
|
Shock
wave experiments
|
Surfaces
and interfaces
|
Thermal
expansivity
|
X-ray,
neutron, and electron spectroscopy and diffraction
|
Instruments
and techniques
|
General
or miscellaneous
|
NATURAL
HAZARDS
|
Atmospheric
(0370 3322, 3339)
|
Geological
(0742, 4564, 7212, 7280, 8419, 8425, 8426, 8428, 8488)
|
Hydrological
(1810, 1812, 1821)
|
Oceanic
(1641, 4564)
|
Space
weather (2101, 2788, 7900)
|
Multihazards
|
Methods
(0500, 3200, 4400)
|
Other
(0468, 0702, 6205, 6210)
|
Analogue
modeling
|
Catastrophe
and catastrophe theory (3215)
|
Extreme
events (1817, 3235)
|
Mathematical
and computer modeling (0500, 3200)
|
Monitoring,
forecasting, prediction (1816, 1922, 2722, 3238, 3245, 4263, 7223, 7924)
|
Physical
modeling (0466, 0545, 0798, 1622, 1847, 1952, 3355, 3367)
|
Precursors
|
Statistical
analysis (1984, 1986)
|
Spatial
modeling (3252, 3255)
|
Climate
impact (1630, 1637, 1807, 8408)
|
Health
impact
|
Human
impact (1834, 7938)
|
Spatial
decision support systems (1918, 6309)
|
Megacities
and urban environment (0345, 0478, 0493)
|
Exposure
|
Resilience
|
Risk
(8488)
|
Sustainable
development
|
Vulnerability
|
Disaster
relief
|
Disaster
resilience
|
Disaster
risk analysis and assessment (6304, 8488)
|
Disaster
risk communication
|
Disaster
management
|
Economic
impacts of disasters
|
Remote
sensing and disasters (1243, 1640, 1855, 3360, 8485)
|
Disaster
policy (6300, 6620)
|
Disaster
mitigation (6309, 7914)
|
Early
warning systems
|
Emergency
management (6344)
|
Preparedness
and planning (6334)
|
Microzonation
and macrozonation
|
Community
management
|
Emergency
response and evacuations (1964)
|
Recovery
and reconstruction after disaster
|
Contingency
planning
|
International
organizations and natural disasters
|
Interaction
between science and disaster management authorities
|
Sociology
of disasters (1974)
|
Psychology
of disasters
|
Miscellaneous
|
NONLINEAR
GEOPHYSICS (3200, 4307, 6944, 7839)
|
Bifurcations
and attractors
|
Cascades
|
Chaos
(7805)
|
Critical
phenomena
|
Complex
systems
|
Emergent
phenomena
|
Fractals
and multifractals
|
Nonlinear
differential equations
|
Nonlinear
maps
|
Nonlinear
waves, shock waves, solitons (0689, 2487, 3280, 3285, 4275, 6934, 7851, 7852)
|
Pattern
formation
|
Phase
transitions
|
Probability
distributions, heavy and fat-tailed (3265)
|
Renormalization
group methods
|
Scaling:
spatial and temporal (1872, 1988, 3265, 3270, 4277, 7857)
|
Self-organized
criticality
|
Self-organization
|
Turbulence
(3379, 4568, 7863)
|
Instruments
and techniques
|
General
or miscellaneous
|
OCEANOGRAPHY:
GENERAL
|
Analytical
modeling and laboratory experiments
|
Arctic
and Antarctic oceanography (9310, 9315)
|
Benthic
boundary layers
|
Climate
and interannual variability (1616, 1635, 3305, 3309, 4513)
|
Coastal
processes
|
Continental
shelf and slope processes (3002)
|
Coral
reef systems (4916)
|
Descriptive
and regional oceanography
|
Diurnal,
seasonal, and annual cycles (0438)
|
Equatorial
oceanography
|
Estuarine
processes (0442)
|
Limnology
(0458, 1845, 4942)
|
Marginal
and semi-enclosed seas
|
Marine
meteorology
|
Marine
pollution (0345, 0478)
|
Numerical
modeling (0545, 0560, 1952)
|
Ocean
acoustics
|
Ocean
data assimilation and reanalysis (3225)
|
Ocean
observing systems
|
Ocean
predictability and prediction (3238, 4315)
|
Ocean
optics (0649)
|
Physical
and chemical properties of seawater
|
Physical
and biogeochemical interactions
|
Remote
sensing and electromagnetic processes (0689, 2487, 3285, 4455, 6934)
|
Time
series experiments (1872, 1988, 3270, 4475)
|
Upwelling
and convergences (4964)
|
Water
masses
|
Instruments
and techniques
|
General
or miscellaneous
|
OCEANOGRAPHY:
PHYSICAL
|
Air/sea
interactions (0312, 3339)
|
Capillary
waves
|
Coriolis
effects
|
Currents
|
Decadal
ocean variability (1616, 1635, 3305, 4215)
|
Deep
recirculations
|
Eastern
boundary currents
|
Eddies
and mesoscale processes
|
ENSO
(4922)
|
Fine
structure and microstructure
|
Fronts
and jets
|
General
circulation (1218, 1222)
|
Hydrodynamic
modeling
|
Hydrography
and tracers
|
Ice
mechanics and air/sea/ice exchange processes (0700, 0750, 0752, 0754)
|
Internal
and inertial waves
|
Nearshore
processes
|
Ocean
fog
|
Ocean
influence of Earth rotation (1223)
|
Overflows
|
Planetary
waves
|
Sea
level: variations and mean (1222, 1225, 1641)
|
Sediment
transport (1862)
|
Surface
waves and tides (1222)
|
Topographic/bathymetric
interactions
|
Tsunamis
and storm surges (4302, 4304)
|
Turbulence,
diffusion, and mixing processes (4490)
|
Upper
ocean and mixed layer processes
|
Western
boundary currents
|
Instruments
and techniques
|
General
or miscellaneous
|
OCEANOGRAPHY:
BIOLOGICAL AND CHEMICAL (0460)
|
Aerosols
(0305, 4906)
|
Analytical
chemistry
|
Anoxic
environments (0404, 1803, 4834, 4902)
|
Benthic
processes, benthos (0408)
|
Biogeochemical
cycles, processes, and modeling (0412, 0414, 0793, 1615, 4912)
|
Carbon
cycling (0428)
|
Chemical
speciation and complexation
|
Chemical
tracers
|
Chemosynthesis
|
Colloids
|
Ecological
prediction
|
Ecosystems,
structure, dynamics, and modeling (0439)
|
Food
webs, structure, and dynamics (0491)
|
Gases
|
Geochemistry
|
Higher
trophic levels
|
Hydrothermal
systems (0450, 1034, 3017, 3616, 8135, 8424)
|
Hypoxic
environments (0404, 4802)
|
Marine
inorganic chemistry (1050)
|
Microbiology
and microbial ecology (0465)
|
Natural
products chemistry
|
Nutrients
and nutrient cycling (0470, 1050)
|
Marine
organic chemistry (0470, 1050)
|
Oxidation/reduction
reactions (0471)
|
Photochemistry
|
Photosynthesis
|
Physical
chemistry
|
Phytoplankton
|
Population
dynamics and ecology
|
Radioactivity
and radioisotopes
|
Sedimentation
(1861)
|
Sorptive
scavenging
|
Stable
isotopes (0454, 1041)
|
Symbiosis
|
Trace
elements (0489)
|
Zooplankton
|
Instruments,
sensors, and techniques
|
General
or miscellaneous
|
PALEOCEANOGRAPHY
(0473, 3344)
|
Abrupt/rapid
climate change (1605)
|
Anthropogenic
effects (1803, 4802)
|
Atmospheric
transport and circulation
|
Aerosols
(0305, 4801)
|
Albedo
|
Astronomical
forcing
|
Biogeochemical
cycles, processes, and modeling (0412, 0414, 0793, 1615, 4805)
|
Continental
climate records
|
Corals
(4220)
|
Cosmogenic
isotopes (1150)
|
Dendrochronology
|
El Nino
(4522)
|
Geochemical
tracers
|
Glacial
|
Global
climate models (1626, 3337)
|
Greenhouse
gases
|
Ice
cores (0724)
|
Insolation
forcing
|
Interglacial
|
Interhemispheric
phasing
|
Isotopic
stage
|
Limnology
(0458, 1845, 4239)
|
Micropaleontology
(0459, 3030)
|
Milankovitch
theory
|
Paleocene/Eocene
thermal maximum
|
Paleoecology
|
Palynology
|
Sea
surface temperature
|
Speleothems
|
Stadial
|
Thermohaline
|
Upwelling
(4279)
|
Instruments
and techniques
|
General
or miscellaneous
|
PHYSICAL
PROPERTIES OF ROCKS
|
Acoustic
properties
|
Fracture
and flow
|
Magnetic
and electrical properties (0925)
|
Microstructure
|
Permeability
and porosity
|
Plasticity,
diffusion, and creep
|
Thermal
properties
|
Transport
properties
|
Wave
attenuation
|
Instruments
and techniques
|
General
or miscellaneous
|
PLANETARY
SCIENCES: ASTROBIOLOGY
|
Formation
of stars and planets
|
Planetary
atmospheres, clouds, and hazes (0343)
|
Origin
of life
|
Hydrothermal
systems and weathering on other planets
|
Early
environment of Earth
|
PLANETARY
SCIENCES: SOLID SURFACE PLANETS
|
Atmospheres
(0343, 1060)
|
Aurorae
and airglow
|
Composition
(1060, 3672)
|
Erosion
and weathering
|
Glaciation
|
Gravitational
fields (1221)
|
Heat
flow
|
Hydrology
and fluvial processes
|
Ices
|
Impact
phenomena, cratering (6022, 8136)
|
Interactions
with particles and fields
|
Interiors
(8147)
|
Ionospheres
(2459)
|
Magnetic
fields and magnetism
|
Magnetospheres
(2756)
|
Meteorology
(3346)
|
Orbital
and rotational dynamics (1221)
|
Origin
and evolution
|
Physical
properties of materials
|
Polar
regions
|
Remote
sensing
|
Rings
and dust
|
Surface
materials and properties
|
Tectonics
(8149)
|
Volcanism
(6063, 8148, 8450)
|
Instruments
and techniques
|
General
or miscellaneous
|
PLANETARY
SCIENCES: FLUID PLANETS
|
Atmospheres
(0343, 1060)
|
Aurorae
|
Composition
(1060)
|
Gravitational
fields (1221)
|
Interactions
with particles and fields
|
Interiors
(8147)
|
Ionospheres
(2459)
|
Magnetic
fields and magnetism
|
Magnetospheres
(2756)
|
Meteorology
(3346)
|
Orbital
and rotational dynamics (1221)
|
Origin
and evolution
|
Polar
regions
|
Rings
and dust
|
Tidal
forces
|
Tori
and exospheres
|
Instruments
and techniques
|
General
or miscellaneous
|
PLANETARY
SCIENCES: COMETS AND SMALL BODIES
|
Atmospheres
(1060)
|
Aurorae,
airglow, and X-ray emission
|
Composition
(1060)
|
Dust
|
Erosion
and weathering
|
Gravitational
fields (1221)
|
Ices
|
Impact
phenomena (5420, 8136)
|
Interactions
with solar wind plasma and fields
|
Comets:
dust tails and trails (6210)
|
Interiors
(8147)
|
Ionospheres
(2459)
|
Magnetic
fields and magnetism
|
Magnetospheres
(2756)
|
Orbital
and rotational dynamics
|
Origin
and evolution
|
Physics
and chemistry of materials
|
Plasma
and MHD instabilities (2149, 2752, 7836)
|
Surfaces
|
Radiation
and chemistry
|
Volcanism
(5480, 8450)
|
Instruments
and techniques
|
General
or miscellaneous
|
PLANETARY
SCIENCES: SOLAR SYSTEM OBJECTS
|
Asteroids
(4308)
|
Asteroids:
satellites
|
Comparative
planetology
|
Comets
(4308, 6023)
|
Centaurs
|
Dust
|
Jovian
satellites
|
Io
|
Europa
|
Ganymede
|
Callisto
|
Jupiter
|
Kuiper
belt objects
|
Mars
|
Martian
satellites
|
Mercury
|
Meteorites
and tektites (1028, 3662)
|
Meteors
|
Moon
(1221)
|
Neptune
|
Neptunian
satellites
|
Triton
|
Planetary
rings
|
Pluto
and satellites
|
Saturn
|
Saturnian
satellites
|
Titan
|
Enceladus
|
Trans-Neptunian
objects
|
Uranian
satellites
|
Uranus
|
Venus
|
Extra-solar
planets
|
Instruments
and techniques
|
General
or miscellaneous
|
POLICY
SCIENCES (4338, 7964)
|
Benefit-cost
analysis (4333)
|
Decision
making under uncertainty (1918, 4324, 4339)
|
Demand
estimation
|
Institutions
|
Legislation
and regulations (6615)
|
Project
evaluation
|
Regional
planning (1880, 4343)
|
System
design
|
System
operation and management (4342)
|
General
or miscellaneous
|
PUBLIC
ISSUES
|
Funding
|
Legislation
and regulations (6324)
|
Science
policy (0485, 4338)
|
Workforce
|
General
or miscellaneous
|
RADIO
SCIENCE
|
Electromagnetic
noise and interference
|
Interferometry
(1207, 1209, 1242)
|
Ionospheric
physics (1240, 2400)
|
Ionospheric
propagation (0689, 2487, 3285, 4275, 4455)
|
Magnetospheric
physics (2700)
|
Nonlinear
phenomena (4400, 7839)
|
Radar
astronomy
|
Radar
atmospheric physics (1220)
|
Radio
astronomy
|
Radio
oceanography (1222)
|
Radio
wave propagation
|
Remote
sensing
|
Signal
processing (0674)
|
Space
and satellite communication
|
Tomography
and imaging (7270, 8180)
|
Waves
in plasma (7867)
|
Instruments
and techniques (1241)
|
General
or miscellaneous
|
SEISMOLOGY
|
Body
waves
|
Continental
crust (1219)
|
Core
(1212, 1213, 8124)
|
Mantle
(1212, 1213, 8124)
|
Earthquake
dynamics (1242)
|
Earthquake
ground motions and engineering seismology (4302)
|
Earthquake
source observations (1240)
|
Lithosphere
(1236)
|
Seismic
monitoring and test-ban treaty verification
|
Oceanic
crust
|
Paleoseismology
(8036)
|
Earthquake
interaction, forecasting, and prediction (1217, 1242, 4315)
|
Seismicity
and tectonics (1207, 1217, 1240, 1242)
|
Subduction
zones (1207, 1219, 1240)
|
Mid-ocean
ridges
|
Transform
faults
|
Surface
waves and free oscillations
|
Theory
|
Tomography
(6982, 8180)
|
Volcano
seismology (4302, 8419)
|
Computational
seismology
|
Seismic
instruments and networks (0935, 3025)
|
General
or miscellaneous
|
SOLAR
PHYSICS, ASTROPHYSICS, AND ASTRONOMY
|
Celestial
mechanics
|
Chromosphere
|
Corona
|
Coronal
holes
|
Coronal
mass ejections (2101)
|
Energetic
particles (2114)
|
Flares
|
Helioseismology
|
Magnetic
fields
|
Magnetic
reconnection (2723, 7835)
|
Photosphere
|
Prominence
eruptions
|
Radio
emissions
|
Solar
activity cycle (2162)
|
Solar
and stellar variability (1650)
|
Solar
irradiance
|
Stellar
astronomy
|
Stellar
interiors and dynamo theory
|
Transition
region
|
Ultraviolet
emissions
|
X-rays,
gamma rays, and neutrinos
|
Instruments
and techniques
|
General
or miscellaneous
|
SPACE
PLASMA PHYSICS
|
Active
perturbation experiments
|
Chaos
(4420)
|
Charged
particle motion and acceleration
|
Discontinuities
(2109)
|
Electrostatic
structures
|
Ionization
processes (2423)
|
Kinetic
and MHD theory
|
Kinetic
waves and instabilities
|
Laboratory
studies and experimental techniques
|
Magnetic
reconnection (2723, 7526)
|
Mathematical
and numerical techniques (0500, 3200)
|
MHD
waves and instabilities (2149, 2752, 6050)
|
Neutral
particles (2151)
|
Nonlinear
phenomena (4400, 6944)
|
Parametric
processes
|
Particle
acceleration
|
Plasma
energization
|
Plasma
interactions with dust and aerosols (2461)
|
Radiation
processes
|
Shock
waves (4455)
|
Solitons
and solitary waves (4455)
|
Spacecraft/atmosphere
interactions
|
Spacecraft
sheaths, wakes, charging
|
Stochastic
phenomena (3235, 3265, 4475)
|
Transport
processes
|
Turbulence
(4490)
|
Wave/particle
interactions (2483, 6984)
|
Wave/wave
interactions
|
Instruments
and techniques
|
General
or miscellaneous
|
SPACE
WEATHER (4305)
|
Geomagnetically
induced currents
|
Engineering
for hazard mitigation (4339)
|
Forecasting
(1922, 2722, 4315)
|
Impacts
on technological systems
|
Impacts
on humans (4323)
|
Ionospheric
effects on radio waves
|
Ionospheric
storms (2441)
|
Magnetic
storms (2788)
|
Models
|
Policy
(2722, 6300)
|
Satellite
drag (1241)
|
Solar
effects
|
Space
radiation environment
|
General
or miscellaneous
|
STRUCTURAL
GEOLOGY
|
Continental
neotectonics (8107)
|
Diapir
and diapirism
|
Dynamics
and mechanics of faulting (8118)
|
Folds
and folding
|
Fractures
and faults
|
Kinematics
of crustal and mantle deformation
|
High
strain deformation zones
|
Local
crustal structure
|
Mechanics,
theory, and modeling
|
Melanges
|
Mesoscopic
fabrics
|
Microstructures
|
Rheology:
crust and lithosphere (8159)
|
Rheology:
general (8160)
|
Rheology:
mantle (8162)
|
Rheology
and friction of fault zones (8163)
|
Pluton
emplacement
|
Paleoseismology
(7221)
|
Regional
crustal structure
|
Remote
sensing
|
Role of
fluids
|
Instruments
and techniques
|
General
or miscellaneous
|
TECTONOPHYSICS
|
Continental
contractional orogenic belts and inversion tectonics
|
Continental
cratons
|
Continental
margins: convergent
|
Continental
margins: divergent (1212, 8124)
|
Continental
margins: transform
|
Continental
neotectonics (8002)
|
Continental
tectonics: compressional
|
Continental
tectonics: extensional (0905)
|
Continental
tectonics: general (0905)
|
Continental
tectonics: strike-slip and transform
|
Core
processes (1213, 1507)
|
Dynamics
and mechanics of faulting (8004)
|
Dynamics
of lithosphere and mantle: general (1213)
|
Dynamics:
convection currents, and mantle plumes
|
Dynamics:
gravity and tectonics
|
Dynamics:
seismotectonics
|
Earth's
interior: composition and state (1212, 7207, 7208, 8105)
|
Evolution
of the Earth (0325)
|
Heat
generation and transport
|
Hydrothermal
systems (0450, 1034, 3017, 3616, 4832, 8424)
|
Impact
phenomena (5420, 6022)
|
Hotspots,
large igneous provinces, and flood basalt volcanism
|
Lithospheric
flexure
|
Obduction
tectonics
|
Ophiolites
(3042)
|
Physics
of magma and magma bodies
|
Planetary
interiors (5430, 5724, 6024)
|
Planetary
volcanism (5480, 8450)
|
Planetary
tectonics (5475)
|
Plate
boundary: general (3040)
|
Plate
motions: general (3040)
|
Plate
motions: past (3040)
|
Plate
motions: present and recent (3040)
|
Rheology:
crust and lithosphere (8031)
|
Rheology:
general (1236, 8032)
|
Rheology:
mantle (8033)
|
Rheology
and friction of fault zones (8034)
|
Stresses:
crust and lithosphere
|
Stresses:
deep-seated
|
Stresses:
general
|
Sedimentary
basin processes
|
Subduction
zone processes (1031, 3060, 3613, 8413)
|
Tectonics
and landscape evolution
|
Tectonics
and climatic interactions
|
Tectonics
and magmatism
|
Tomography
(6982, 7270)
|
Volcanic
arcs
|
Instruments
and techniques
|
General
or miscellaneous
|
VOLCANOLOGY
|
Geochemical
modeling (1009, 3610)
|
Thermodynamics
(0766, 1011, 3611)
|
Reactions
and phase equilibria (1012, 3612)
|
Subduction
zone processes (1031, 3060, 3613, 8170)
|
Mid-oceanic
ridge processes (1032, 3614)
|
Intra-plate
processes (1033, 3615)
|
Hydrothermal
systems (0450, 1034, 3017, 3616, 4832, 8135)
|
Effusive
volcanism (4302)
|
Mud volcanism
(4302)
|
Subaqueous
volcanism
|
Explosive
volcanism (4302)
|
Planetary
volcanism (5480, 6063, 8148)
|
Volcanoclastic
deposits
|
Volcano/climate
interactions (1605, 3309, 4321)
|
Atmospheric
effects (0370)
|
Volcanic
gases
|
Lava
rheology and morphology
|
Magma
migration and fragmentation
|
Eruption
mechanisms and flow emplacement
|
Physics
and chemistry of magma bodies
|
Calderas
|
Experimental
volcanism
|
Tephrochronology
(1145)
|
Remote
sensing of volcanoes (4337)
|
Field
relationships (1090, 3690)
|
Volcano
monitoring (4302, 7280)
|
Volcanic
hazards and risks (4302, 4328, 4333)
|
Instruments
and techniques
|
General
or miscellaneous
|
GEOGRAPHIC
LOCATION
|
Africa
|
Antarctica
(4207)
|
Arctic
region (0718, 4207)
|
Asia
|
Atlantic
Ocean
|
Australia
|
Europe
|
Indian
Ocean
|
Large
bodies of water (e.g., lakes and inland seas) (0746)
|
North
America
|
Pacific
Ocean
|
South
America
|
General
or miscellaneous
|
INFORMATION
RELATED TO GEOLOGIC TIME
|
Cenozoic
|
Neogene
|
Paleogene
|
Mesozoic
|
Cretaceous
|
Jurassic
|
Triassic
|
Paleozoic
|
Permian
|
Carboniferous
|
Devonian
|
Silurian
|
Ordovician
|
Cambrian
|
Precambrian
|
Proterozoic
|
Archean
|
General
or miscellaneous
|
GENERAL
OR MISCELLANEOUS
|
Instruments
useful in three or more fields
|
New
fields (not classifiable under other headings)
|
Notices
and announcements
|
Techniques
applicable in three or more fields
|
Assinar:
Postagens (Atom)